Kantorovich Inequality is used to show linear convergence for steepest descent algorithm (for the quadratic case). This result is important in some optimization algorithms.
Kantorovich Inequality
Suppose \(x_1 < x_2 < … < x_n \) are given positive numbers. Let \(\lambda_1, … , \lambda_n \geq 0\) and \(\sum_{i = 1}^n \lambda_i = 1\) then
$$ \left( \sum_{i = 1}^n \lambda_i x_i \right) \left( \sum_{i = 1}^n \lambda_i x_i^{-1} \right) \leq \frac{1}{4} \frac{(x_1 + x_n)^2}{x_1 x_n}$$
Proof
(Anderson)
Note that \(\sum_{i=1}^n \lambda_i = 1 \) then the equation can be expressed in terms of expectation.
$$ \left( \sum_{i = 1}^n \lambda_i x_i \right) \left( \sum_{i = 1}^n \lambda_i x_i^{-1} \right) = E(X) E(1/X) $$
where \(E\) is the expected value of the random variable \(X, \frac{1}{X}\), with probabilities \(\lambda_1, …, \lambda_n\), with the values of X such that \(0 < x_1 \leq X \leq x_n \).
For \(0 < x_1 \leq X \leq x_n \)
$$ 0 \leq (x_n - X)(X- x_1) = (x_n + x_1 - X) X - x_n x_1 $$
which implies
$$ \frac{1}{X} \leq \frac{x_1 + x_n - X}{x_n x_1} $$
So then
\(\begin{align}
E(X) E(1/X) & \leq E(X) \frac{x_1 + x_n - E(X)}{x_n x_1} \\\\
& = \frac{1}{4} \frac{(x_1 + x_n)^2}{x_1 x_n} - \frac{1}{x_1 x_n } (E(X) - \frac{1}{2}(x_1 + x_n))^2\\\\
& \leq \frac{1}{4} \frac{(x_1 + x_n)^2}{x_1 x_n}
\end{align}
\)